
ISO/IEC JTC 1/SC 22/OWGV N 0226
A. Burns and A.J. Wellings, "Language Vulnerabilities - Let’s not forget Concurrency"

Date 2009 October 13
Contributed by Stephen Michell (Canada)
Original file name Burns-vulnerabilities.pdf
Notes

1

Moore, Jim

From: Alan Burns [burns@cs.york.ac.uk]
Sent: Tuesday, October 13, 2009 5:55 AM
To: Moore, Jim
Cc: Andy Wellings
Subject: Re: Fwd: [SC22-OWGV] Concurrency paper

Certainly Jim:

The authors, A. Burns and A.J. Wellings, of the attached article, "Language Vulnerabilities ‐
Let's not forget Concurrency", hereby grant permission for ISO/IEC JTC1/SC22/WG23 to post the
article on their website and to adapt the text of the article for use in standards and other
documents.

Regards
Alan

Language Vulnerabilities - Let’s not forget Concurrency

A. Burns and A.J. Wellings
Real-Time Systems Group

Department of Computer Science
University of York, UK.

May 6, 2009

1 Introduction
Recent activities, within the auspices of ISO, have fo-
cused on the potential vulnerabilities of programming lan-
guages in use in high integrity applications. A draft tech-
nical report has been produced [5] that unfortunately con-
tains little on the subject of concurrent language features.
And yet concurrency is a significant issue in the design
and implementation of many systems. Sequential pro-
gramming languages ignore such issues and assume that
the underlying operating system will deal with the man-
agement of threads/tasks and their inevitable interactions
and synchronisations.

This paper 1attempts to provide a comprehensive list of
language vulnerabilities when concurrency and real-time
features are supported. This list could form the basis for
an assessment of Ada’s tasking features. Such an assess-
ment is likely to indicate that Ada has many advantages
over other languages’ provisions. Both the full language
and the Ravenscar Profile should be addressed within such
an assessment.

There are three main motivations for wanting to write
concurrent programs and therefore to have the notion of
concurrency in the employed programming language [2].

• To model parallelism in the real world - Real-time
and embedded programs have to control and inter-
face with real-world entities (robots, conveyor belts,
etc.) that are inherently parallel. Reflecting the par-
allel nature of the system in the structures of the pro-

1A version of this paper has been offered to a forthcoming workshop
on Language Vulnerabilities

gram makes for a more readable, maintainable and
reliable application.

• To fully utilize the processor - Modern processors
run at speeds far in excess of the input and output
devices with which they must interact. A sequential
program that is waiting for I/O is unable to perform
any other operation.

• To allow more than one processor to solve a problem
- A sequential program can only be executed by one
processor (unless the compiler has transformed the
program into a concurrent one). Modern hardware
platforms consists of multiple processors to obtain
more powerful execution environments. A concur-
rent program is able to exploit this true parallelism
and obtain faster execution.

Concurrency does however bring with it a number of
new vulnerabilities, and language features that support
concurrent programming need to be assessed in the same
way that sequential features are currently being scruti-
nized. Note that the decision not to use a concurrent pro-
gramming language does not remove these vulnerabili-
ties; many will be present in the operating system (OS)
and the API used by the sequential program to access to
the concurrency features of the OS. Indeed many of the
vulnerabilities will be more extreme as they cannot easily
be mitigated by the semantic restrictions in the language.

In this short position paper three topics are addressed:
concurrency, communication and synchronisation, and
scheduling. For each topic a series of issues are consid-
ered and possible vulnerabilities and mitigation are iden-
tified. Note the concurrent entity that is termed a task, a

1

thread, a process or sometimes an event in the many dif-
ferent concurrent programming languages is called a task
in the following descriptions.

2 Concurrency
Many different concurrency models can be found in pro-
gramming languages. There are distinguished by issues
such as: static or dynamic task creation, hierarchical task
structures, and the degree to which one task can influ-
ence/interfere with the behaviour of other tasks.

Static task creation
The simplest task structure available is one in which there
is a fixed number of tasks that are created at the time of
program instantiation. All tasks then exist for the duration
of the program, which may be unbounded. Vulnerabilities
from this simple model include the following.

1. Not all tasks start their execution (e.g. they may fail
during activation).

2. Premature silent termination of a task or tasks.

3. Tasks executing with inappropriate initialisation pa-
rameters.

4. Overflow of task-local data (task attributes).

The first two vulnerabilities result in the program ex-
ecuting with only partial functionality. If tasks are rela-
tively independent of each other then this situation may
not be apparent to the tasks that are actually executing. A
task may fail for a number of reasons including functional
problems or execution issues such as stack overflow.

A common pattern for a real-time task is for it to be re-
lease periodically (with period T) and for its execution ur-
gency to be influenced by its deadline (D) – both of these
measures being of some appropriate time time. Such a
task could be instantiated with inappropriate values for its
parameters. The task may still function perfectly, but at
the wrong rate (or it may be more likely to miss a dead-
line).

Where tasks use attributes stored in the TCB (task con-
trol block) during execution then an overflow of data may

result in another task’s TCB being corrupted. Similar is-
sues apply to stack usage.

Language-level mitigation against these vulnerabilities
is as follows.

• Signal when a created task fails to become runnable
(or to become executable after an initialisation
phase).

• Signal when a task terminates.

• Enable all initialisation parameters be be stored as
constants in a single program module that can be in-
dependently verified.

• Prevent tasks form using attributes stored on the
TCB, or ensure that the number of such attributes is
statically bound and that each attribute is of a fixed
static size.

The term ‘signal’ here is used in the general sense of a
program entity that is either directly executed by the pro-
gram run-time or is enabled by the run-time and executed
under the control of the program. For a concurrent pro-
gram with static task creation, the signal could be code
external to the other tasks or enabled code executed under
the control of one of the other tasks.

This signal abstraction will be used in a number of dif-
ferent situations in this treatment.

Dynamic and hierarchical task creation
If tasks can be created during the program’s execution
then many different program architectures can be con-
structed. Task termination becomes a normal event, and
dependencies between tasks based on creation and termi-
nation are possible. Additional vulnerabilities from these
features include the following.

5. Memory exhaustion due to dynamic object creation.

6. Memory exhaustion due to memory leakage.

7. Tasks indefinitely waiting for other tasks to termi-
nate.

8. Tasks subject to errors propagating from child task
creation.

2

All dynamically created objects, whether tasks or not,
require memory and hence are subject to finite memory
constraints. In very dynamic programs where many tasks
are recreated and then terminate, it is important to ensure
that terminated tasks can (and do) relinquish all memory
allocated to them.

A common pattern in dynamic task programs is for one
task to create another, and to subsequently wait for its
termination. Creating a task may open up a vulnerabil-
ity, and waiting for another task to terminate will clearly
lead to indefinite postponement if that task does not in fact
complete.

Language-level mitigation against these vulnerabilities
is as follows.

• Allow a program to easily bound the number of ac-
tive tasks it can contain; and to signal if this bound is
violated.

• Allow the run-time to efficiently determine when a
terminated task can have all its memory relinquished,
allow these conditions to be easily delivered by the
program, and require the run-time to actually reuse
this memory (could involve the use of garbage col-
lection).

• Provide a time-out feature on awaiting task termina-
tion.

• Minimise (or eliminate) dependencies between the
created and the creator task, and signal when a task
creation fails.

Inter-task influence/interference
Task can usually communication data and synchronise
their executions via the language features that are de-
scribed in section 3. But there are languages features
that allow other forms of influence/interference. Some of
these are via the scheduling facilities, and are covered in
section 4. Here we cover abort, asynchronous exceptions,
and asynchronous transfer of control (ATC). All of these
are used to get the ‘immediate’ attention of the designated
task. Polling for a state change is inappropriate. Vulnera-
bilities from these features include the following.

9. Rogue task aborting correctly behaving task (rather
than visa versa).

10. Task (or program scope) terminated whilst holding
locks/resources.

11. Task being in an inappropriate state to handle ATC
or asynchronous exception.

The abort feature is one of the most controversial in that
the motivation for its inclusion (to remove a rogue task)
is mirrored by its main drawback (rogue task removing
others).

All task terminations can cause problems if the task is
not in the correct state for termination. But this is espe-
cially true when termination is imposed from outside. If
the task is not terminating but its control is being influ-
enced from outside then again there is the problem of this
influence taking effect when the task is vulnerable, for ex-
ample while updating a shared complex data structure.

Language-level mitigation against these vulnerabilities
is as follows.

• Remove the abort feature.

• Provide a security manager.

• Signal when task terminates, and/or use object ‘de-
structor’ methods.

• Define program structures that postpone ATCs or
asynchronous exceptions.

Many vulnerabilities can be eliminated by simple ban-
ning the associated language feature, but ‘abort’ is not
universally supported and would be a simple feature to
ban if the language uses a reserved word to represent this
feature (ie. the non use of the reserved word is easily
checked).

Knowing when a task has terminated is only the first
part of reliable protecting against locks and resources be-
ing ‘lost’ when a task terminates. Recovery action still
has to be programmed. To postpone the impact of asyn-
chronous effects is necessary; there is a choice however
to either allow code to ‘opt in’ or ‘opt out’ of these influ-
ences.

3

3 Communication and Synchroni-
sation

Two general forms of communication are possible: syn-
chronous and asynchronous. Synchronisation can be ex-
plicitly supported or programmed. Three combinations
are considered in turn.

Asynchronous communication via shared
variable
Vulnerabilities from these features include the following.

12. Unintentional use of unprotected shared variables.

13. Mutual update problem.

14. Race conditions.

15. Livelocks.

Shared variable are a well known error-prone language
feature. As a result no language relies only on such vari-
ables. But some languages do allow their use and require
the programmer to ensure that the intended behaviour is
delivered.

Language-level mitigation against these vulnerabilities
is as follows.

• Remove the shared variable feature.

• Provide adequate synchronisation primitives.

Again if there are appropriate alternatives, shared vari-
ables are not necessary (although certain forms of par-
allel architectures may require them for efficiency rea-
sons). Race conditions and livelocks are difficult to mit-
igate against, but the number of situations in which they
can occur can be reduced by sensible language choices.

Asynchronous communication with synchro-
nisation support
A wide range of support features are available in differ-
ent languages; for example, semaphores, signals, moni-
tors and protected objects. Vulnerabilities from these fea-
tures include the following.

16. Race conditions.

17. Deadlocks.

18. Indefinite postponements.

19. Protocol failures.

Once a task can be suspended then deadlocks and un-
bounded suspension become possible. Parts, or all, of
the program can fail to make adequate progress. If a
low-level primitive such as a signal or semaphore is used
with shared variables to support a protocol such as read-
ers/writers then errors can lead to rare race conditions and
protocol failures.

Language-level mitigation against these vulnerabilities
is as follows.

• Do not use low-level primitives.

• Use a protocol that is deadlock free - for example
the priority ceiling protocol for single processor sys-
tems.

Again race conditions, deadlocks and indefinite postpone-
ments are difficult to mitigate against.

Synchronous communication (eg. ren-
dezvous)
Simple CSP-like primitives and extended rendezvous are
supported in different languages. Vulnerabilities from
these features include the following.

20. Race conditions.

21. Deadlocks.

22. Indefinite postponements.

Although a similar list to before, these vulnerabilities
are less severe with synchronous communications facili-
ties. Indeed modeling and proof systems can be used to
show the absence of these problems within programs, but
only if the rendezvous is a simple one.

Language-level mitigation against these vulnerabilities
is as follows.

• Do not use the extended versions.

4

• Restrict what can be done during a rendezvous.

Depending on what the other concurrency features are
within the language, the list of restrictions can be quite
extensive.

4 Scheduling and Real-Time Issues
In this section there are a number of issues to con-
sider. First we will cover time and clock primitives, then
scheduling and related topics.

Clocks and time
For real-time systems it is necessary to have access to a
clock, measure time intervals and suspend a task for an
interval of time. Vulnerabilities from these features in-
clude the following.

23. Drift between system clock and ‘real-time’.

24. Drift between clocks on a distributed platform.

25. Inappropriate incorporation (or not) of leap seconds
and time zone changes.

26. Mismatch between delay/sleep intent and clock
granularity.

These are all well known timing/clock issues [2, 3].
Language-level mitigation against these vulnerabilities

is as follows. They all involve the program having more
visibility of the underlying implementation of the clock
primitives.

• Enable the program to enquire as to the last epoch
(synchronisation between system clock and external
time base (UTP)) and current maximum drift.

• Enable the program to enquire as to last clock syn-
chronisation and to the current maximum clock drift.

• Support two clocks, one monotonic and one ‘wall
time’, and reduce the potential for use of the wrong
clock.

• Enable the programmer to enquire as to the details of
the delay/sleep implementation.

Asynchronous and synchronous task control
These language features allow one task to control the ex-
ecutable state of another task. Vulnerabilities from these
features include the following.

27. Suspended tasks not being continued subsequently.

28. Tasks being suspended whilst holding locks/ re-
sources.

29. Race conditions.

Similar arguments to those for banning the use of abort
can be applied to this level of task control. Being indefi-
nitely suspended is almost the same as being aborted.

Language-level mitigation against these vulnerabilities
is as follows.

• Postpone the suspension of a task while it is holding
locks or other resources.

Fixed priority scheduling
In this section the most common form of task dispatching
is considered. If the language does not directly support
such a policy then all scheduling must be under direct user
control using the synchronous/asynchronous task con-
trol methods discussed above (and the dynamic priority
scheme covered below). For fixed priority scheduling the
vulnerabilities include the following.

30. Priority inversion.

31. Starvation.

32. Assumptions of scheduling analysis not been met by
the program, for example execution times, blocking
times, minimum times between sporadic tasks, in-
tensity of interrupts, overheads of run-time, garbage
collection overheads etc. requirements.

33. Excessive asynchronous traffic (interrupts/events)
generated.

Priority inversion occurs through the use of a synchro-
nisation primitive that does not take priority into account.
Starvation occurs when there is not enough processing

5

time available for the low priority tasks to make adequate
progress.

Language-level mitigation against these vulnerabilities
is as follows.

• Incorporate priority inheritance protocols where ap-
propriate – ideally one that prevents deadlocks.

• Monitor and enforce CPU time usage by tasks.

• Monitor and blocking and interference times.

• Signal when a deadline is missed.

• Signal when interrupts/events occur too often, and be
able to disable them for periods of time.

Program control over scheduling parameters
or policy

If a scheduling scheme such as fixed priority scheduling
is supported by the language then it is usual to allow the
program to exercise control over some of the scheduling
parameters, such as the assignment (static or dynamic)
of priorities to tasks and the periods and deadlines of the
tasks. Vulnerabilities from these features include the fol-
lowing.

34. Loss of liveness (some tasks fail to make progress).

35. Loss of timeliness (some task failing to meet a dead-
line).

Language-level mitigation against these vulnerabilities
is as follows.

• Provide high level abstraction for common task
‘types’ such as periodic or sporadic tasks (ie. prevent
program from changing the scheduling parameters).

• Do not allow dynamic priority changes.

• Enable all scheduling parameters be be stored as
constants in a single program module that can be in-
dependently verified.

• Signal when a task misses a deadline.

5 Conclusions
This short paper has attempted to highlight the many dif-
ferent vulnerabilities that exist with concurrent program-
ming languages. There are a large number (and variety) of
language features that support various aspects of concur-
rent programming. Not all can be used safety and there
are many vulnerabilities that the above review has high-
lighted. For many of these vulnerabilities it is possible to
define language-level mitigation. Some are simply to not
allow the use of (non-essential) features. Others point to
safe usage patterns. As noted in the introduction, the deci-
sion not to use a concurrent programming language does
not remove these vulnerabilities; many will be present in
the operating system (OS) and the API used by the se-
quential program to access to the concurrency features of
the OS.

It is possible to take an extensive set of language fea-
tures, such as those provided by Ada tasking, and define
a subset (and other restrictions) so that a profile is de-
fined that has adequate expressive power and a minimum
of vulnerabilities. One candidate for this would be the
Ravenscar profile for Ada [1, 4]. Similar profiles need
to be defined for other languages. We note that Java has
started to undertake this process under the auspices of the
Java Community Process (JSR 302).

References
[1] A. Burns, B.Dobbing, and T. Vardanega. Guide for the

use of the Ada Ravenscar Profile in high integrity systems.
Technical Report YCS-2003-348, University of York, De-
partment of Computer Science, 2003.

[2] A. Burns and A. J. Wellings. Real-Time Systems and Pro-
gramming Languages. Addison Wesley Longman, 4th edi-
tion, 2009.

[3] G.F. Coulouris, J. Dollimore, and T. Kindberg. Distributed
Systems, Concepts and Design. Addison Wesley, 4th edi-
tion, 2005.

[4] ISO/IEC. Information technology - programming languages
- guide for the use of the Ada Ravenscar Profile in high
integrity systems. Technical Report TR 24718, ISO/IEC,
2005.

[5] ISO/IEC. Information technology - programming languages
- guidelines to avoiding vulnerabilities in language selection
and use. Technical Report PDTR 24772 – draft, ISO/IEC,
2009.

6

